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Spike-triggered averages for passive and resonant neurons receiving filtered
excitatory and inhibitory synaptic drive

Laurent Badel,1 Wulfram Gerstner,1 and Magnus J. E. Richardson®*
'Ecole Polytechnique Fédérale de Lausanne, Laboratory of Computational Neuroscience, School of Computer
and Communication Sciences and Brain Mind Institute, CH-1015 Lausanne, Switzerland
Warwick Systems Biology Centre, University of Warwick, Coventry CV4 7AL, United Kingdom
(Received 22 January 2008; published 22 July 2008)

A path-integral approach is developed for the analysis of spike-triggered average quantities in neurons with
voltage-gated subthreshold currents. Using a linearization procedure to reduce the models to the generalized
integrate-and-fire form, analytical expressions are obtained in an experimentally relevant limit of fluctuation-
driven firing. The influences of voltage-gated channels as well as excitatory and inhibitory synaptic filtering are
shown to affect significantly the neuronal dynamics prior to the spike. Analytical forms are given for all
relevant physiological quantities, such as the mean voltage triggered to the spike, mean current flowing through
voltage-gated channels, and the mean excitatory and inhibitory conductance waveforms prior to a spike. The
mathematical results are shown to be in good agreement with numerical simulations of the underlying nonlin-
ear conductance-based models. The method promises to provide a useful analytical tool for the prediction and

interpretation of the temporal structure of spike-triggered averages measured experimentally.
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I. INTRODUCTION

Reverse-correlation methods have a long tradition in the
neurosciences [1] and are widely used to characterize the
response properties of neurons [2,3]. Spike-triggered aver-
ages, defined as the mean value of some physiological quan-
tity over the time prior to a spike, provide convenient experi-
mental measures of the salient features of the activity in
presynaptic populations that result in a spiking of the
postsynaptic neuron. This experimental method is a standard
approach used for the mapping of receptive-field structure of
retinal ganglion cells [4], neurons of the lateral geniculate
nucleus [5], and the primary visual cortex [6,7] as well as
different classes of auditory neurons (e.g., [2,8]).

The spike-triggered average of the intracellular voltage
(which will be referred to as STV) is one of the more exten-
sively used quantities: it is accessible in both in vitro and in
vivo experiments, and is a function of the combined effects
of the temporal structure of the synaptic drive and the re-
sponse properties of the cell. In an experimental context, a
correct inference from the intracellular voltage to the under-
lying patterns in the synaptic input leading to a spike re-
quires an accurate model of the neuronal response properties:
two cells with different voltage-gated-current expression pro-
files will show significantly different STVs from exposure to
the same presynaptic stimulus. Hence, an analytical under-
standing of the processes that shape the STV and related
observables is essential for the understanding of the compu-
tational properties of neurons as encoded in their differing
thresholded response to fluctuating synaptic drive.

Even in the steady state, extracting the temporal features
from nonlinear stochastic systems can be mathematically de-
manding. For rate-based neuron models, the relation between
the spike-triggered average and the properties of the under-
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lying model are relatively well understood (e.g., [9,10]).
However, for spiking neuron models this problem is more
difficult, and only recently have a number of results been
reported for the STV of integrate-and-fire (IF) neurons: a
general formula based on mapping the IF model to an escape
noise model [11]; an eigenvalue analysis for the leaky IF
model of the influence of averaging over isolated and non-
isolated spikes [12]; an approximation based on the observa-
tion of the time symmetry of the STV for the leaky IF model
[13]; analytical formulas in the low-rate limit for the leaky IF
neuron and the power-law scaling near threshold [14,15];
exact results for the STV of the nonleaky IF model [15]; and
a formula [14] for the STV of a two-variable generalized IF
neuron. These earlier studies approximated the synaptic fluc-
tuations by a white-noise source. However, excitatory and
inhibitory synapses have distinct receptor-inactivation kinet-
ics that lead to a filtering of the input. This feature of synap-
tic drive could have a potentially significant impact on the
temporal patterning of the response, but has been neglected
in previous STV analyses.

This paper examines the combined effects on spike-
triggered quantities of voltage-gated channels and the filtered
synaptic drive typical of excitatory AMPA synapses and in-
hibitory GABAergic synapses. As will be seen, this involves
a significant extension of the path-integral formulation pre-
viously used for the white-noise case. Of particular interest
will be the effects of subthreshold currents that provide nega-
tive feedback, like the hyperpolarization-activated depolariz-
ing current Th [16] that underlies resonant or oscillatory phe-
nomena [17-22] at the cellular level. Here a generalized
integrate-and-fire neuron [20,21] will be used to derive ex-
pressions for the time course of the spike-triggered voltage,
transmembrane currents, and synaptic conductances. The
method identifies the distinct roles played by voltage-
activated channels, and excitatory and inhibitory synaptic
drive in the run-up to the spike.
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II. MODEL

The full nonlinear conductance-based model, which will
be integrated numerically, will first be described. Following
that, the approximation scheme required to reduce the model
to a form which may be tackled mathematically is briefly
reviewed and the simplified description, in terms of linear
stochastic differential equations, provided.

A. Conductance-based model

The membrane voltage V of the cell obeys an equation
comprising a capacitive term of capacitance C=1 nF in par-
allel with a set of subthreshold transmembrane currents I,
and a synaptic driving current /.

dv

CE + [sub = Isyn' (1)
The spike-generation mechanism is described by a strict
threshold at V,,=—55 mV followed by a reset at a value V,,.
The form of the reset has a negligible effect on the dynamics
because the neuronal response will be treated in the low-rate
regime in which memory of the previous spike will have
faded by the time of the next one. The effect of the hard
threshold and the difference that might be expected were a
nonlinear spike-generating current to be included, is consid-
ered in the Discussion.

1. Subthreshold currents

The subthreshold currents considered here comprise a
passive leak current /; of conductance g; and reversal poten-
tial E;=—85 mV; a current [, providing positive feedback,
similar to the persistent sodium current, with instantaneous
activation, a reversal potential Ep=40 mV, and a maximal
conductance gp; and Iy an Ih-like hyperpolarization-
activated depolarizing current of maximal conductance gy,
reversal potential Eyy=—20 mV with an activation variable
W with voltage-history-dependent dynamics. The instanta-
neous currents take the form

I, =g/ (V-E)

with the third current of the form

and Ip=gpPoo(V_EP)7 (2)

. aw
IW: ng(V—Ew) with ’TW;:WOO—W, (3)

where 7y=75 ms. The activation variables P., and W, are of
the form

A(V) ={1+exp[(V-V,)/A T, (4)

where V, is the voltage at which half the channels are open
and A, measures the width of the activation curve. For Iy,
these parameters take the values Vy=-70 mV, A,
=15 mV and for /p these parameters take the values Vp=
—-60 mV, Ap=15 mV. It can be noted that these choices for
the activation are relatively broad, so as to allow a meaning-
ful comparison with the linearization procedure. For currents
with sharper activation curves the linearization procedure
will of course be less accurate, but it will nevertheless pro-
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vide a good indication of the qualitative response and may be
systematically improved upon by going to higher order.

Three parameter sets were chosen to provide neuron mod-
els with distinct response profiles: (i) a passive neuron with
£:.=0.05 and gp=gy=0, (ii) a neuron with a sag and rebound
response with g;=0.05, g,,=0.145, and gp=0, and (iii) a
neuron with damped oscillations g;=0.15, gy=0.15, and
gp=0.062. All conductances have units of uS. The response
of these three neuron models to step current inputs is shown
in Fig. 1(A).

2. Synaptic current

The synaptic current I, is mediated by changes in exci-
tatory g,(z) and inhibitory conductance g;(r). The resulting
current [23] can be written

Isyn:ge(V_Ee) +gi(V_Ei)s (5)

where E,=0 mV and E;=-75 mV are the equilibrium po-
tentials for the two synaptic drives. Using excitation as an
example, the total conductance increases by c, each time an
excitatory presynaptic spike arrives and inbetween spikes the
conductance relaxes back to baseline with a relaxation time
scale 7,=3 ms typical for fast excitatory kinetics

Te%=_ge+ce7-ez 5(t_tk)’ (6)
dt
where the excitatory spike arrival times #, are Poisson dis-
tributed with a rate R, with a similar equation for fast inhi-
bition for which ;=10 ms. It is assumed that excitatory and
inhibitory spike trains are uncorrelated.

3. Monte Carlo simulations

A forward Euler scheme of time step dr=10 us or less,
was used to integrate the above equation sets [with Poisso-
nian shot noise given in Eq. (6)] for sufficiently long time
periods required for the acquisition of 10 000 spikes. In Fig.
1(B) we show for the three neuron models defined above a
typical voltage trajectory leading to an output spike.

B. Approximation strategy

In order to reduce the full model into a tractable form, the
standard methods [20,21,24-26] of linearization of the acti-
vation variables (4) and taking the diffusion limit of the Pois-
son processes are taken. To perform the linearization, the
voltage is expanded around its equilibrium value with only
terms that are of first order in the voltage and fluctuating
transmembrane conductances retained. As has been shown
[27,28] this is equivalent to the Gaussian approximation
[29-33] for which the tonic conductance increase and addi-
tive fluctuations of the conductance drive are retained, but
the multiplicative term is dropped. This is a consistent ap-
proximation for the nonthresholded neuron [27,28] because
both shot-noise effects and conductance fluctuation effects
are neglected. However, shot-noise and conductance fluctua-
tions are retained in the numerical simulations to which the
mathematical solutions will be compared. Full details of this
procedure can be found in Appendix A.
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FIG. 1. (Color online) Three different types of neuron model give rise to three qualitatively different spike-triggered averages. (A)
Response of the model to a small current pulse causing a steady-state depolarization of about 0.5 mV. Three types of response are
distinguished: passive decay, sag-rebound, and damped oscillations. (B) Sample voltage trajectories leading to an output spike in the
simulations. [(C) and (E)] Comparison of numerical simulations (symbols) of the full conductance-based model to the low-rate theoretical
predictions [solid lines, Egs. (30)—(32), (34)—(36), (B20), and (B21)]. (C) Spike-triggered average voltage. (D) Spike-triggered average
synaptic conductances (circles: excitatory conductance; squares: inhibitory conductance). (E) Spike-triggered average values of the intrinsic
membrane current (circles: I, h-current; squares: Iy,p, persistent sodium current). Parameters for the case of passive decay were rate of
arrival of excitatory and inhibitory conductance pulses, R,=4.17 kHz and R;=1.25 kHz; amplitude of conductance pulses, c¢,=3.6 nS and
¢;=4.6 nS; firing rate r=1.1 Hz. For the sag-rebound case, R,=3.06 kHz, R;=0.8 kHz, ¢,=3.27 nS, ¢;=6.26 nS, and firing rate r
=1.3 Hz. For damped oscillations, R,=4.59 kHz, R;=2.81 kHz, ¢,=0.76 nS, ¢;=0.80 nS, and firing rate r=0.1 Hz.

C. Simplified model

The resulting linearized model comprises a set of stochas-
tic differential equations that are the basis of the analytical
treatment in this paper.

TO=—U0—yW+x+y, (7)

TIW=E—Ww4+u, (8)
= —x+ o 21E (1), )
Ty =—y+ o200, (10)

where v is the voltage measured from its resting potential, w
is proportional to the activation of the Iy, subthreshold cur-
rent, and x and y are proportional to the excitatory and in-
hibitory synaptic fluctuations. The quantities §, and &, are
independent Gaussian white-noise processes with zero mean
and delta correlations (&(r)&(¢'))=8(t—t"). The strength of
the subthreshold current 7y, on the voltage is measured by the

parameter y. A value of y>0 results in negative feedback
that can lead to a sag response or damped oscillations [20].
All parameters of the linearized model can be related to those
of the full nonlinear model, with the details given in Appen-
dix A. The subthreshold dynamics defined by the set of equa-
tions (7)—(10) is supplemented by a threshold vy, and reset at
U,., which are also measured from the baseline resting po-
tential.

III. PATH INTEGRAL REPRESENTATION

In this section we will use a brief review of our previous
results [14], for neurons subject to a Gaussian white-noise
approximation of synaptic current fluctuations, to introduce
the path-integral framework. This also allows for the differ-
ences between the cases of unfiltered and filtered synaptic
drive to be highlighted more clearly in the next section.

The path-integral formulation for excitatory fluctuations
x(t) is used here as an example. It is assumed that the neu-
ronal voltage reaches the threshold at time r=0 and so a time
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interval [—T,0] prior to the spike will be considered. We split
this time interval into N bins of size A, such that f;=-T
+kA,. Integrating Eq. (9) over a time bin and neglecting
terms O(Atz) yields

A A
xk+1=xk_7txk+ (o \/:[lﬂk, (11)
X v

where i, is a Gaussian random number of zero mean and
unit variance. The distribution of x;,; at 7., given x; at #;,
will also be Gaussian, and so the probability density of find-
ing a discrete-time trajectory with values {x;} can be written

1

P({xg) o« eXP(- > %) =exp[-S({xp].  (12)

k=-N 2

The quantity S({x;}) on the right-hand side of Eq. (12) can be
rewritten by solving Eq. (11) for ¢, yielding

1w A x—x 2
Stad) =752 ;’(rx%w) SNE)
xk=—-N ‘'x t

For calculational purposes it proves convenient to take the
continuum limit A,— 0 to yield

0
S[x(t)]=40_12 f dr(7% + x)2dt. (14)

xTx -T

This quantity is called the action [34] of the path integral.
For the case of relatively weak fluctuations considered here,
o, is small, and so the probability density will be strongly
peaked around the trajectory that minimizes the integral on
the right-hand side of Eq. (14). The extremizing trajectory
may be found using standard methods of the calculus of
variations. In general, the limit 77— will be taken so that
trajectories will be considered that came out of a steady-state
ensemble in the distant past. This is an acceptable approxi-
mation for neurons that fire with a typical period that is
considerably longer than the intrinsic time constants of the
membrane dynamics.

A. Neuronal response to Gaussian white-noise synaptic
fluctuations

The spike-triggered average trajectory has been previ-
ously analyzed, in the weak-noise limit, for neurons with a
passive response [14,15,35] and with linear membranes ex-
hibiting a sag or damped oscillatory response [14] when the
synaptic fluctuations are modeled using Gaussian white
noise. These results are now briefly reviewed, using the for-
malism demonstrated in the derivation of Eq. (14).

1. Passive membranes

The case of a passive membrane with a white-noise drive
is given by Eq. (7) with y=0 and x+y replaced by
O'U\e“'Zva(t), where 0'3 is the variance of the voltage in ab-
sence of threshold. This equation is of the Ornstein-
Uhlenbeck form and so has an action identical in form to that
given by Eq. (14) but with the assignment x— v and T— .
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1 0
S=— f dt(L,v)?, (15)

4o° T,

vivy —®

where the operator and its adjoint are defined as
d § d
,CZ=1+TZE and ﬁZ:l_TZE (16)

for any quantity z. From the calculus of variations the mini-
mizing trajectory obeys

L,Llv=0 yielding v(r) = v, e"™. (17)

This result [14,15,35] provides a good approximation to the
spike-triggered average voltage in the low-rate, fluctuation-
driven firing regime. However, near threshold v,;, a boundary
effect intervenes that is not captured by the low-rate approxi-
mation. Near the boundary the trajectory can be shown [14]
to take the form of a power law for t—0, <0,

16}t
v(t) =vy—o,\[—. (18)
T,
This singular behavior is due to the interaction of the white
noise with an absorbing boundary and is also observed in the
absence of leak currents [15].

2. Linearized, quasiactive membranes

Biologically important membrane response properties
such as a sag-rebound, associated with the Th current, or
damped oscillations have been modeled [14,20,21] using
Egs. (7) and (8) with y>0 and the Gaussian white-noise
approximation with the replacement x+y— o\27,&(r). The
action in this case takes the form

1 0
S= Py fw dt(L,v + yw)?. (19)

The minimization problem becomes straightforward when
Eq. (8) is rearranged to yield v=L, w and substituted into the
integral to give the integrand in the form (£,£,,w+yw)?. The
minimizing trajectory satisfies

(LoLo+ V(LILT + pw=0. (20)

vTw

This fourth-order linear equation has exponential solutions
with eigenvalues =\, and *£\,, where

[
l(Tv + Tw) * \/’(Tv - Tw)2 - 4TUTW’Y

Np=- (21)

2 Ty Ty

On imposing the boundary conditions v(r=0)=v,,, further
optimization over the possible values of w at threshold yields
the spike-triggered average voltage as

Uy
o) e — 0 22
® Nk, + 1 -
55 22
" ()\2()\17'W — l)e_)\|1+ 7\1(7\27"47 - 1)6_)\2[) . (23)
Y A=A

Though the action in Eq. (19) comprised two system vari-
ables, as shown in Eq. (20) it was possible to substitute for
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one of the variables (v) so as to rewrite the action in terms of
a single state variable. This simple approach is not possible
for the case of two independent noise sources with distinct
filter constants, and therefore a more involved method needs
to be developed, as will now be shown.

IV. FILTERED SYNAPTIC DRIVE

In order not to overly obscure the reading of the basic
framework required to treat the case of two noise sources
with distinct filtering constants, the bulk of the calculation
details are to be found in Appendix B. We will now proceed
with the case of the passive membrane, and then extend these
results to the case of linearized, quasiactive membranes.

A. Passive membranes with filtered noise sources

The passive model (y=0) with filtered synaptic drive,
Eqgs. (7)—(10), has an action of the form

=2 [ [ s
(x,y)—4 o o‘zrx( ) +0'27'

x 'y

(Eyy)z}dt, (24)

where the two synaptic fluctuations x,y are assumed to be
independent. It is now no longer possible to reduce the prob-
lem to a variational minimization over a single variable; the
action functional must be minimized over the set of paired
trajectories {x(z),y(¢)}, which trigger an output spike exactly
at =0, i.e., which led to v(0)=v,. Using Eq. (7), this condi-
tion can be rewritten as an integral constraint
0

G(x,y) = e"[x(t) + y(t)]dt — T,v 4= 0. (25)
Following the standard methods of the calculus of variations
(see Appendix B) the solution to this minimization problem
satisfies the system of differential equations

Cxﬁix =Ae, (26)

L,Lly=Ae"™, (27)

where A is the Lagrange multiplier associated with the
threshold condition. This gives

_ 1, t'T,
=c X,
x(t) =c1e"™ + cre” ™ (28)

y(t) =de"™ + dye" ™. (29)

The four constants ¢y, ¢,, d;, and d, can be determined by
inserting these expressions back into Egs. (24) and (25) and
solving the resulting algebraic minimization problem (see
Appendix B). The resulting form of the mean excitatory syn-
aptic fluctuations in the run-up to the spike is

2 +
x(t) = 0x<ieﬂfv + ue”“) , (30)
Ty — Ty =Ty
where
ar(r,+7)\"!
0x=va(1+—;—w ) (31)
UxTx(Tv + Tv)

A similar expression for the inhibitory fluctuations is ob-
tained by switching the indices x and y. Then, from Egs. (7),
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(30), and (31), the time course of the spike-triggered average
membrane voltage is found to be

Tx
et/7v+ Et/TX>
"~ Ty

o(f) = ax< To

Ty — Tx

T, :
+ 0‘,( e + —)—e’”y). (32)
N1, -7, =T,

The theoretical results of Egs. (30)—(32) are in good agree-
ment with numerical simulations of the passive neuron
model [Fig. 2(C)]. Equation (32) allows for an interpretation
of the quantities 6, and 6,. At the point of the spike, when
t=0 the voltage v, is equal to their sum. Hence, 6, and 6,
measure the contribution of excitatory and inhibitory fluctua-
tions to the reaching of the threshold. Both these terms are
positive, but the correct interpretation is that the positive
inhibitory contribution comes from fluctuations in inhibition
that momentarily weaken the baseline inhibition. It can fur-
ther be noted that because 6,/ 0),0< o')zc/ 05, the relative contri-
bution of the synaptic fluctuations scales with the ratio of
their variances.

The form of the voltage equation (32) shows explicitly the
effect of the filtering of the noise. If the limit of 7,,7,—0 is
taken, the white-noise result Eq. (17) is recovered. However,
given that the values for the membrane time constant for
cortical cells are in the range 10-40 ms and that inhibitory
filtering has a time constant of 10 ms, the filtering can be
significant. This effect is further compounded when condi-
tions of high synaptic conductance are considered for which
the effective membrane time constant 7, can be reduced to as
little as 5 ms [36]. Under such circumstances the synaptic
contribution (prefactor of the exponential with the 7, decay)
is twice as large as the contribution from the membrane dy-
namics (prefactor of the exponential with the 7, decay).

B. Linearized active membranes with filtered noise

The case of quasiactive membranes is now studied, in
which an additional subthreshold current is present (y>0).
The calculation proceeds as for the passive case, but with the
threshold condition now taking the form

0
f (pre™M" + pre)[x(2) + y(1)]dt — T,04=0.  (33)

The eigenvalues \; and \, are given by Eq. (21), and the
coefficients p; and p, are related to the change of coordinates
that diagonalizes the linear system (7) and (8) (see Appendix
B for details). The stationarity condition (Euler-Lagrange
equation) gives the following form for the synaptic conduc-
tances:

x(t) = cie™ + cre™ 4 5",

y(t) =de™ + dye™ + dye’ .

The constants ¢; and d; can be found in closed form (see
Appendix B for details). We obtain for the synaptic conduc-
tances,
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FIG. 2. (Color online) Spike-triggered averages in the simulations and in the theory. Numerical simulations of the simplified model
(symbols) are compared to the low-rate theoretical predictions (solid lines). The model is defined by Egs. (7)—(10), and the theoretical
predictions were calculated using Egs. (30)—(32) for the passive case, and Egs. (34)—(36), (B20), and (B21) for the two other cases. (A)
Sample voltage trajectories leading to an output spike in the simulations. (B) Spike-triggered average voltage. (C) Spike-triggered average
synaptic conductances (circles: excitatory conductance; squares: inhibitory conductance). (D) Spike-triggered average values of the intrinsic
membrane current (circles: 1, h-current; squares: Iy,p, persistent sodium current). The parameters of the reduced model were derived from
the full model in Fig. 1. For all three cases, 7,,=75 ms. For the case of passive decay, 7,=6.56 ms, y=0, 0,=3.65 mV, ¢,=2.13 mV, and
firing rate r=1.0 Hz. For the sag-rebound case, 7,=6.68 ms, y=0.62, 0,=2.86 mV, g,=2.41 mV, and firing rate r=1.0 Hz. For damped
oscillations, 7,=39.02 ms, y=3.20, 0,=4.67 mV, (ry=3.53 mV, and firing rate r=0.2 Hz.

x(t) _ 6x< (Tv + Tw))\l)\Z(l - Tx)\l)(l - Tx)\Z))

L+ 7N Ay = 7oA +1y)

( 20+7M)
(=20 -0

N 2(1 + TW)\2)
e
(1= ANy —\y)

Nyt

(Tx - Tw) ”G)
e +m0)° ) (34)

with the eigenvalues \;,\, given by Eq. (21), and

0'57},(1 -7 N =7\y)
+

orr (1= 70 )(1 = 7\
" L+ 2N A= 7\ + xz))—‘

1+ 7200 — 1A +\y)

0x:Ug<l

(35)

The voltage trajectory can be expressed as v(t)=v,(f)+v,(1),
where

(1 - Tx)\l)(l - 7-x)\2) )
L+ 2N A= (A + 1))

( MM =D

(1= 2AD =N

FERNIUSal VI
(1= 72D =\)

NN+ 7\2)(7'3V_ Ti)Tx t/TX)
(1-2A)(1 - 2A3) ’

v (1) = 0x<

Aot

(36)

and v,(z) is obtained by switching the indices x and y. By
taking the limit 7,7, — 0, it can be verified that this expres-
sion is consistent with the result for unfiltered synaptic fluc-
tuations, Eq. (22). For y—0, we have \;——1/7, and \,
——1/7,, and the result for the passive membrane, Eq. (32),
is recovered.

Similarly to the passive case, it can be seen that the two
quantities ¢, and 6, measure the contributions of excitatory
and inhibitory conductance fluctuations to the total mem-
brane depolarization. Since the eigenvalues A and \, have a
negative real part, it follows that these two contributions are
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FIG. 3. (Color online) Spike-triggered averages at very low firing rates. The theoretical predictions [solid lines, Egs. (30)—(32), (34)-(36),
(B20), and (B21)] are compared with numerical simulations of the simplified model (symbols) for a firing rate of 10~ Hz. (A) Sample
voltage trajectories leading to an output spike in the simulations. (B) Spike-triggered average voltage. (C) Spike-triggered average synaptic
conductances (circles: excitatory conductance; squares: inhibitory conductance). (D) Spike-triggered average values of the intrinsic mem-
brane current (circles: I, h-current; squares: In,p, persistent sodium current). The parameters are the same as in Fig. 2, except o,
=154 mV, 0,=1.37 mV (decay), 6,=1.39 mV, 0,=1.31 mV (sag-rebound), 5,=2.33 mV, and 0;,=2.36 mV (damped oscillations).

positive: the voltage run-up to the spike is due to both an
increase in excitation and a decrease in inhibition, so that
both excitatory and inhibitory fluctuations take part in firing
the cell. Furthermore, the relative contribution of each con-
ductance again scales with the ratio of the noise strengths
0./ 0,xa./0,.

C. Comparison of the theory with numerical simulations
of the full model

Figure 1 compares the theoretical results of the preceding
section with numerical simulations of the full conductance-
based model defined by Eqgs. (1)—(6). The theoretical spike-
triggered average voltage and conductances were obtained
using Eqgs. (30)—(32) for the decay case (left column in Fig.
1), and Egs. (34)—(36) for the two other cases (sag-rebound
and damped oscillations). For the latter we also show in Fig.
1(D) the spike-triggered average of the voltage-activated
subthreshold currents and compare it to the theoretical re-
sults of Egs. (B20) and (B21) given in Appendix B.

The data shows a good agreement between theory and
simulation, particularly given the fact that the full model
incorporates two nonlinear voltage-gated subthreshold cur-
rents and retains both the conductance and shot-noise aspects
of the synaptic drive, whereas the theoretical calculations
were carried out with the linearized model and within the
Gaussian approximation to synaptic fluctuations. The bulk
part of the spike-triggered average is well approximated for

all three types of subthreshold dynamics. The theory also
captures the time course of the excitatory and inhibitory syn-
aptic conductances in the run-up to the spike: in the low-
firing rate regime the average trajectory preceding a spike is
close to the trajectory of highest probability calculated from
the variational approach.

The major discrepancy occurs in a small temporal region,
just before the spike threshold is crossed. In the last few
milliseconds (<5 ms) before the spike is triggered, the syn-
aptic conductances in the theory begin to relax back to their
baseline value—a feature that is not seen in the simulations.
The reason for this is that in the extremization procedure the
voltage derivative dv/dt must be zero at threshold because
the most likely trajectory during weak noise is the one which
glances threshold [this can be seen directly from the analyti-
cal expressions of the STV, Egs. (32) and (36)]. This progres-
sive slowing of the membrane potential also causes a slight
shift of the STV along the time axis, which is most visible in
the case of damped oscillations (right column in Fig. 1). This
effect does not stem from the linearization of the voltage-
gated currents or the approximation of the synaptic input, as
it is also seen in numerical simulations of the reduced model
(see Fig. 2). Rather, it is due to the fact that the theory is
asymptotically exact in the limit of vanishing firing rate, and
that the conditions in the numerical simulations depart
slightly from this limit. Indeed, a clear convergence is seen
as the firing rate approaches zero (Fig. 3).
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FIG. 4. (Color online) Spike-triggered averages: effects of correlations between excitation and inhibition. The theoretical predictions of
Appendix C (solid lines) with numerical simulations of the simplified model (symbols) for a correlation coefficient p=0.4. (A) Sample
voltage trajectories leading to an output spike. (B) Spike-triggered average voltage. (C) Spike-triggered average synaptic conductances
(circles: excitatory conductance; squares: inhibitory conductance). (D) Spike-triggered average values of the intrinsic membrane current
(circles: I, h-current; squares: Iy,p, persistent sodium current). The parameters are the same as in Fig. 2, except 0,=4.86 mV, o,
=3.33 mV, firing rate 0.7 Hz (decay), 0,=3.27 mV, ¢,=2.90 mV, firing rate 0.1 Hz (sag-rebound), and 0,=5.84 mV, 0,=5.89 mV, firing

rate 0.2 Hz (damped oscillations).

1. Including cross correlations between excitation and inhibition

The theory developed above is readily extended to the
case of correlated synaptic drive, in which the excitatory and
inhibitory conductances are no longer independent. Details
of how this extension can be implemented are given in Ap-
pendix C. Figure 4 shows an example of the effects of cor-
related synaptic fluctuations, for which the correlation coef-
ficient p is equal to 0.4 (see Appendix for a definition) where
a positive correlation coefficient means that excitatory and
inhibitory inputs tend to occur synchronously, thus partially
canceling each other. In this case, the theory again predicts
spike-triggered average quantities very satisfactorily, with
the discrepancy near the threshold comparable to the uncor-
related case.

Although the time course of the membrane voltage is
largely unaffected by the correlations, the shape of the syn-
aptic conductances is significantly altered. Technically, this
difference is due to the appearance of a mixed mode ~e" ™ in
the excitatory conductance, and vice versa for inhibition.
Some modes may be suppressed and others enhanced in a
way that will be most favorable for the emission of a spike,
leading to significant changes in the patterns of the spike-
triggered average synaptic inputs. For example, in the case of
passive decay, the initial slow decrease in inhibition is ac-
companied by a simultaneous decrease in excitation as a re-
sult of the correlation between the two. The fast increase in

excitation that follows is also accompanied by an increase in
the inhibitory conductance. Finally, it can be noted that the
case of negative correlations does not differ significantly
from the uncorrelated case and is thus not examined in detail
here.

V. DISCUSSION

We have derived analytical expressions for the spike-
triggered average of generalized integrate-and-fire neurons
with voltage-activated subthreshold currents. Our theory al-
lowed us to construct a direct relation between spike-
triggered averages and neuronal response properties, comple-
menting other approaches that focused on the relation to
different quantities such as the population activity [11] or the
phase response curve [37]. Our results, which are exact in the
limit of low-firing rates, are shown to provide a good ap-
proximation to the empirical spike-triggered average for fir-
ing rates up to a few Hz. The model used in this paper is able
to reproduce three important types of subthreshold voltage
dynamics seen in biological neurons: passive decay,
h-current sag, and damped voltage oscillations. The results
clearly demonstrate that the form of the spike-triggered av-
erage is determined by both the response properties of the
neuron and the statistics of the synaptic input, with potential
implications for models of spike time-dependent plasticity
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where the spike-triggered average membrane potential plays
a role in shaping the distribution of synaptic weights.

Although other parameters, such as conductance and shot-
noise effects, the nonlinearity of voltage-gated conductances,
or the nature of the spike-generation mechanism, may have
an influence on the precise shape of the STV, they do not
change the qualitative aspect of our results. Therefore, our
analysis also emphasizes the potential of the generalized
integrate-and-fire model as an analytical tool: the results pre-
sented here are in good agreement with numerical simula-
tions of the full nonlinear model comprising two voltage-
gated currents and driven by conductance-based synaptic
shot noise. Our calculations show that for these type of mod-
els, the form of the spike-triggered average depends on the
response properties of the neuron in the vicinity of the mean
voltage, which could underlie a switching between different
modes of information processing depending on the amount
of background synaptic input. As an example, stellate cells of
the entorhinal cortex display sag-rebound behavior at resting
and hyperpolarized membrane potentials, and damped oscil-
lations at more depolarized voltages [22]. This implies that
the most likely voltage trajectory has different properties in
these voltage ranges, and may support the existence of two
distinct operating modes where the neuron fires in response
to different types of synaptic inputs.

The path-integral formalism reviewed here has had previ-
ous applications for the case of one-variable nonlinear
integrate-and-fire neurons [35] and generalized integrate-
and-fire neurons [14] driven by white noise. Here, we devel-
oped an extension of this method to include temporal corre-
lations in the synaptic inputs, which allowed us to separate
the roles of excitatory and inhibitory conductances in shap-
ing the membrane potential run-up to the spike. In the regime
considered here, i.e., the case of low-frequency, noise-driven
spike generation, the average synaptic input consists of an
increase in excitation coincident with a withdrawal of inhi-
bition. Since the contribution of each synaptic pathway to the
total membrane depolarization scales with the intensity of its
fluctuations, the role of inhibition may be as large, or even
larger, as that of excitation itself. This shows that inhibitory
fluctuations that weaken the background level of inhibition,
take an active part in the generation of action potentials—a
fact that could be particularly important during high-
conductance, cortical up states.
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APPENDIX A: REDUCTION OF THE CONDUCTANCE-
BASED MODEL

The reduction strategy is to consider the voltage fluctua-
tions as small deviations away from the resting potential E,,,
which will be determined below. Expansion of the shot-noise
synaptic conductances leads to a Gaussian approximation of
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the fluctuations and expansion voltage-activated currents
leads to a linear description of the membrane response.

1. Gaussian approximation of the synaptic current

Following [27], the synaptic conductances (using excita-
tion as an example) in Eq. (5) can be separated into tonic g,
and fluctuating g, components g,=g.0+g&.r Where g,
=c,TR,. In the diffusion approximation the shot-noise con-
ductance fluctuations become an Ornstein-Uhlenbeck pro-
cess

dg el
TX
dt

=—8er Tt 0'6\"’27)55(1‘), (Al)
where the conductance variance is o”>=c>7,R,/2 and £(7) is
zero-mean, delta-correlated (&(1)&(t'))=06(t—1t') Gaussian
white noise. The fluctuations g,x(f) and g;z(r) drive the volt-
age away from its rest E, so the synaptic current [Eq. (5)]
may be approximated to first order in V-E; as

Ixyn = ge()(Ee - V) + gi()(Ei - V) + geF(Ee - EO) + giF(Ei - EO)
(A2)

Terms of the form g,x(E,—V), and similar for inhibition,
have been dropped because they are beyond first order: V
—E, grows with g, and g;z.

2. Linearization of voltage-gated currents

A convenient method [24,25] is to linearize the voltage
around resting potential E,, which in this context is the
steady-state voltage of the neuron in the absence of synaptic
fluctuations (though retaining the tonic conductance of the
synaptic drive). The potential E, can be found from the nu-
merical solution of the following equation:

_ 8LEL+ 8wWoEw + gpPoEp + 8o0E. + gioE,
gr+8wWo+8pPo+ 80+ &io

where Wy=W_(E;) and P,=P.(E,) denotes the activation
variables evaluated at E.

It proves convenient to introduce a variable that measures
the voltage deviation from rest v=V—-E and similarly a vari-
able w=(W,—W)/W,, that measures the deviation of the Iy
activation variable from its resting value W, where W}, is the
voltage derivative of W, evaluated at E,.

E, , (A3)

dv ,
C— =—vg+wgyWy(Ey - Ep) + g.r(E, - Ey)

dt
+8r(E. — Ey), (A4)
Twac'i_v: =v-w, (A5)
where the conductance g is found to be
§=8.+8wWo+8pPo+8pPo(Ep—Eg) + 8.0+ &io-
(A6)

These equations, together with the equations for the Gauss-
ian conductance fluctuations of the form (A1), represent the
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first-order expansion of the dynamics. The substitutions x
=(geF/g)(Ee_EO)’ O-x=(0-e/g)(Ee_E0)’ =T, and likewise
for inhibition and the variable y, together with the identifi-
cations 7,=C/g and y=—(gy/g)W\(Ew—E,) yield the re-
duced set of four equations (7)—(10).

APPENDIX B: MINIMIZATION OF THE ACTION
FUNCTIONAL FOR COLORED NOISE

We consider the n-variables generalized integrate-and-fire
model defined by

n—1

d
T =—u— Sy + 100, (B1)
dt k=1

de

=k _y—w, B2

7t =v-w, (B2)

for k=1,...,n—1, where I(t)=x(r)+y(t) is the fluctuating
part of the synaptic current. The most probable escape tra-
jectory for this system is obtained by minimizing the action
functional

s _1f° AN
@ =3] (2 E’+

x yy

(Eyy)z}dt. (B3)

In order to perform the minimization, it is necessary to cal-
culate the response of the model to an injected current (7).
We start by rewriting the system in vector notation as

u=Au+J({), (B4)

where u=(u,u,,...,u,) is a vector containing the voltage
variable (u;=v) and the n—1 auxiliary variables (u,,
=wy,k=1,...,n=1), and J(1)=(I(¢)/ 7,,0,0,...,0). The ma-
trix A is formed of the coefficients of the linear system. If the
time constants 7, are all different, this matrix admits n dis-
tinct eigenvectors ey, ...,e, (generally complex valued), as-
sociated with the eigenvalues Ay, ...,\,. The change of vari-
ables z=S"'u, where S=(e,,...,e,) is the matrix whose
columns are formed of the eigenvectors of A, results in the
diagonalized system

z=Dz+J(1), (B5)

where D=diag(\, ...,\,), and J=S"1J. This system is easily
solved and the vector u is obtained with the inverse transfor-
mation u=Sz. For an initial condition of the form u(0)
:(u(l),ug, ,ug), this gives

t
I(s
ui(t) = 2 Sy S ufeM + | X Pyt )
k.l 0 k 7

v

ds, (B6)

where the coefficients P; are given by P,»k=S,<kS;11. Thus,
for a trajectory starting at the equilibrium point u°
=(0,0,...,0) at time —oo, the threshold condition can be
written as
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0
Gy = | 2 pee™[x(r) + y(0)]dt = 7,0,=0, (B7)
- k

which is the n-dimensional analog of Eq. (33). Note that we
have written p; instead of P;. The first extremality condition
(Euler-Lagrange equation) thus reads

2
(1 - T)zcd—z)x(t) —AD, pre M =0. (B8)
dt X

This equation is solved by

n+l

x(t) = 2 cpe™, (B9)
k=1

where we have defined \,,;=-1/7,. Similarly, we obtain for
y(®),

n+l

y(1) = X dye™™, (B10)
k=1

where v=(\, ... N1/ 7).

When these expressions are inserted back into the action
functional and threshold condition, we obtain an algebraic
minimization problem for the constants ¢, and d;. The solu-
tion can be written in matrix form as

A= Tl (B11)
o (WX ) + ol ('Y )
¢=(Aoir)X i, (B12)
d=(Aa}7)Y"'7, (B13)
where for k,[=1,...,n+1,
1—72)(1 = 7\

X/d:—( Ty k)( Ty l) (B14)

N+ N\

n p
== —— (B15)

o NN
and similar expressions for Y and 7 are obtained by switch-
ing the indices x and y and the eigenvalues A\ and v,. Finally,
the amount 6, of membrane depolarization that is contributed
by the excitatory drive can be written as
2 (2Ty-12y\ -1
orn(nY
0X:UH(1 _M) > (B16)
UiTx(/-L X

with a similar expression for 6,.

Using the notations of Appendix A, the time course of the
synaptic conductances g,(1)=g.,o+x(#)/(E,—E;) and g;(1)
=g,0+y(t)/ (E;—E,) are determined from the constants ¢; and
d, and Egs. (B9) and (B10). The membrane voltage is then
obtained using Eq. (B6). For n=2, we obtain Egs. (34) and
(35) for the synaptic conductances, and v(r)=v,(1)+v,(1),
where '
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Cc C
o) = (ﬂ N L)_le—m_ (L N &)ze—w

2)\1 )\1+)\2 Ty )\1+)\2 2)\2 Ty
+( G R L )C3e’” (B17)
-7\ 1=-7N)/ T

and v, is obtained from v, by switching the indices x and y.
The coefficients p,= P, are those introduced in Eq. (B6) and
for the voltage variable we have

Tw()\l - )\2) ,

which gives Eq. (36). The second subthreshold current w(z)
is obtained with Eq. (B17) using the coefficients

1+ Tw)\2

rla-ny B8

pP1= P2=

7,(1+ 7, A ) (1L + 7,\,)
’)’72()\2 \y)

P1=—D2= (B19)

This gives w(t)=w,(t)+w,(t), where
(l) ) ((1 - Tx)\l)(l - Tx)\Z)(l + 7-w)\l)(l + Tw)\2)>
B N P W
X( Tv7\22(1 + 7,0\ e
(1- Tx)\%)o\z -\y)
+ 7-v)\l(l + TW)\Z)
e
(1= AN = Np)
(Tv + Tw)(Tx B Tw)i)\l)\Z ’/Tx)
-2-2) )

Finally, the time course of the intrinsic membrane currents in
Fig. 1 can be calculated using the parameters from the lin-
earization of the conductance-based model as

Aot

(B20)

Iy/(t) =—gw<

= )(Eo -Ey),
Ey

d 0
1p<z>=—gp(Pw(Eo)+ (u(r)—Eo)% )(EO—EP>.
E,

(B21)

APPENDIX C: CROSS CORRELATIONS BETWEEN
SYNAPTIC EXCITATION AND INHIBITION

Correlations between the two synaptic inputs can be mod-
eled by defining the synaptic input as

dx

no == o2 [NI- P60 -p (0], (C)
dy —
TyE =-y+o,\27,&(1), (C2)

where p is the cross-correlation coefficient between the ex-
citatory and inhibitory inputs (not the synaptic conductances
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themselves). In this case, the action functional takes the form

(L) (L)
L TE )f { e

(L)L) }

tipT=H— > F 0_2 (C3)
T
The associated Euler-Lagrange equations read
LTﬁxx cic,y
=AX pe™,  (CH)
ST
LiLy LiL x
. P s A2 (©9)
yy \Uxwao-yTy k
and are solved by
n+2
()= 2 e, (C6)
k=1
n+2
V(D)= 2 die™, (C7)
k=1

with \,,,;=—1/7, and \,,,,=-1/7,. This leads to the coupled
system of algebraic equations

X zZ\(c i
L) -

where the matrices X,Y,Z are defined by
(1 - Tx)\k)(l - Tx)\l)

Xu=- , C9
(@m0 )
1—7N)(1 =7\
Ykl:—( T) k)( Ty l), (CIO)
(Ony) ()\k + )\l)
1 —7A)(1 =7\
Z= p( _ 7N ( Ty ) (C11)
\/0’ T, \/0' T, (Ak+ )\1)
‘ Pi
- C12
M= g =Nt ( )
Using the definition
>3 X Z -1 -
BT e
7 Z Y] \g
we obtain the Lagrange multiplier as
A=l (C14)
AR+

Finally, the coefficients ¢; and d, are given by ¢=Au* and
d=A7"
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